2001 Users Group Conference

L. Patrick Purtell

W. Roger Briley

ERC SimCenterMississippi State University

D. G. Dommermuth
SAIC San Diego

Joseph Gorski
NSWC Carderock

Submerged Wakes in Littoral Regions

Project Overview

Turbulent Wakes from Submerged Vehicles Operating in Coastal Regions

Complex Phenomena Requiring Ultra-Large Scale Computations

Maneuvering Vehicles Generate Complex Wake Patterns

Hull and Appendage Vortex Structures Propulsor Wakes
Very Complex Geometry, Dominant Flow Physics is Localized

Vehicle Wakes Interact with Difficult Coastal Environment

Shallow Water Stratification Wave Motion Shear Currents
Simple Geometry, Very Complex Turbulence Physics

UnRANS Predictions for Vehicle Maneuvering

LES Simulations for Far-Field Wake Structures

Interactions of Vehicle Motion with Wake Signatures

Background: Previous Challenge Project on Submarine Maneuvering

January 1997

February 1997

March 1997

August 1997

April 1998

May 1998

August 1998

September 1998

April 1999

July 1999

January 2000

April 2000

Detailed Validation of Propeller Vortices

Sailplane-Induced Rising Maneuver

Appended SUBOFF Hull with Sailplane Pedestals

Sailplane-Induced Rising Maneuver

Vortex Wakes Behind Deflected Sailplanes

Rudder-Induced Maneuver (Stern View)

10 Deg. Rudder Deflection

Full-Scale Simulation: Re = 10⁹

Unstructured Grid (Y⁺ < 1 at All Surface Points)

FY01 Progress

ONR Validation Experiments Using Radio-Controlled Model

- MODEL GEOMETRY CAREFULLY MEASURED
- HIGH-RESOLUTION CONTROL SEQUENCES

- VARIETY OF MANEUVERS EXECUTED
- EXTREMELY GOOD REPEATABILITY

UnRANS: Maneuvering Simulations

UnRANS Maneuvering: Reference Frames

Forces, Moments, Velocities: Relative to Body Displacements: Relative to Inertial Frame

Vary Dt, Iterations, k-e vs. q-w, Initialization, Smoothed C.S. Motion

UnRANS: Maneuvering Simulations

Computational Details

- ☐ 6 Million Grid Points, 57 Blocks
- □ Sublayer Resolution: Y+ < 1</p>
- **☐** Body Force Propulsor Model
- ☐ Startup Solution: 6550 Cycles
- ☐ Time Step of 0.004 Sec. (Physical)
- □ Simulation Speed:0.25 Physical Sec.per Runtime Hr.on 57 SP-3 Processors

RCM Start-Up Solutions

Structured Grid Solution

Unstructured Grid Solution

RCM Maneuvering Simulation

Animation: RCM Maneuver # 41

- ☐ Horizontal Overshoot (HOVR)
- ☐ EYA of 30 degrees
- **☐** Rudder Deflection of -10.0 degrees
- ☐ 10.9 Second Maneuver at 10 ft/sec

Control Surface Motion

ANGULAR RATES

ORIENTATION

Vertical Overshoot +/- 25 Deg. Sternplane

RCM #27

Horizontal Overshoot +/- 10 Deg. Rudder

RCM #18

Horizontal Overshoot +/- 21 Deg. Rudder

UnRANS: Analysis and Future Work

- **□** Accuracy of Forces & Moments
 - **☐** Grid Resolution
 - **☐** Turbulence Model
 - **□** Unsteadiness Effects
- **☐** Grid Refinement
- **□** RCM with Propulsor
- Sensitivity Analysis

LES: Wake Simulations

- Initial focus: Unsteady structure of the turbulent wake
 - Unstratified vs. stratified
 - Towed vs. self-propelled
 - Laboratory and near-full-scale Re
 - Pancake eddy formation
 - Vertical fluctuations radiate away as internal waves
 - Turbulent production becomes asymmetrical
 - Elliptical vortex distribution develops instability
- Goal: Radiation of internal waves by the turbulent wake and displacement effects in the littoral zone

LES: Formulation

- Relate spatial evolution of physical wake to temporal evolution of computational wake.
- No attempt to directly model the flow around the sphere.
- Use mixed model of Bardina, et al. (1984) for subgrid-scale stress tensor.
- Grid resolution:
 - 256 x 512 x 257 (12Dx24Dx12D)
- Numerical details:
 - FDM, HPF, T3E(128 nodes)

LES: Wake Simulations

Vertical Vorticity in a Drag Wake

Stratified, Re=5290,Fr=2

Stratified, Re=10⁵,Fr=2

Non-stratified, Re=5290, Fr=8

Non-stratified, Re =10⁵,Fr=2

Vertical Vorticity in a Momentumless Wake

Non-Stratified Stratified, F=2.04 **12D** -12D

Animation of Vertical Vorticity Component

$$Re = 10^5, Fr = 2$$

Drag Wake

Momentumless Wake

Each Frame Represents a Different Distance Downstream of the Body

(b)

LES: Conclusions

Drag Wake

 Coherent "pancake eddies" form without the presence of similarly-sized structures in the near field

Momentumless Wake

- Evolution of mean axial velocity is highly dependent on propeller swirl
 - Swirl acts to stabilize axial velocity
- Effects of stratification are more dramatic than for drag wake
- Similar pancake structures, but:
 - More small-scale structure
 - More chaotic

Project Conclusions

Maneuvering Simulations (UnRANS)

Validation of Maneuvering Prediction Capability

Forces, Moments, Velocities, Trajectory, Angular Rates, Orientation Very Encouraging Agreement with Experiment, Without Propulsor

Far-Field Wake Simulations (LES)

Complex Far-Field Wake Structure and Properties

Drag Wake of Sphere, Momentumless Wake of Submarine
Coherent Structures, Stratification, Wake Decay Properties
Very Encouraging Agreement Agreement with Laboratory Data

Animation of Submarine Maneuver

Animation of Momentumless Wakes

WAKES MOVIE

$$F = 2$$

Re = 10^5

$$F = 8$$

Re = 10^5

Semi-Empirical Parallel Performance Model

CPU, Cost, and Memory Efficiencies for Typical Current-Generation Values of Processor Speed and MPI Bandwidth

THE END

